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A comparison of well known size-dependent crystal growth rate models has been presented.
The models have been verified for crystal size distributions which have been recently presented
in the literature. It is shown that for large crystal size range both the Abegg-Stevenson-Larson
(ASL) model and the Canning-Randolph (C-R) model can be reduced to the simplest Bransom
model. Two another kinetics size-dependent growth rate models have been presented and tested
for size distributions which were recently presented by Mydlarz and Jones. Application of the
proposed size-dependent growth models gives much better estimation of growth rate than other
size-dependent models tested as well as Sikdar and White-Bendig~Larson methods.

The simulation, design and control of bulk suspension crystallizers is dependent on
the accurate prediction of the crystal size distribution (CSD). Crystallization kinetics
are commonly measured using the continuous mixed-suspension, mixed-product-
-removal (MSMPR) crystallizer technique which permits simultaneous determination
of both growth and nucleation rates by analysis of the CSD at a given mean residence
time. These kinetic data can be then correlated with appropriate growth and nuclea-
tion rate models.

For an MSMPR crystallizer operating at steady state, the general population
balance equation reduces to!:

d[G(L). n(L)] | n(L) _ T
dL : o

where G(L) is the crystal growth rate, n(L) is the population density, L is the crystal
size and 7 is the mean retention time of suspension within the crystallizer. For size-
-independent growth G(L) = G = constant, Eq. (1) can be integrated to give:’

W(L) = n® . exp [~ LI(G . 7)] o
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Eq. (2) indicates that a size analysis performed on a representative sample of crystal-
lizer contents yields the necessary data to determine both crystal growth rate G
(= dL/dt), and nuclei population density n® (L = 0), the latter being related to the
nucleation rate B® (= n°. G).

Non-constant growth rates complicate the determination of kinetics from CSD
data. Researches have used several approaches to dealing with the modelling of
non-constant growth, These include size-dependent growth and growth rate disper-
sion; experimental data show the existence of both size-dependent growth and growth
rate dispersion. Mydlarz? and Mydlarz and Briedis®'* has recently compared the
size-dependent and growth rate dispersion modelling of growth rate estimation for
MSMPR crystallizer CSD data, using both current known empirical size-dependent
and growth dispersion models. They found?~* that the size-dependent growth
rate modelling remains , at present, the recommended approach for modelling growth
rate kinetics for MSMPR crystallizer CSD data.

When crystal growth rate is size-dependent, relationships between crystal size
distribution and crystallization kinetics become more complicated. Three general
methods have been proposed in the literature for estimation of size-dependent growth
rate from continuous mixed-suspension, mixed product-removal (MSMPR) cry-
stallizer.

Briefly, discrete values of the size-dependent growth rate can be estimated from
equation suggested by Sikdar® (Method I):

_ NI
6L = t.(nL) ¢

where N(L) is the cumulative number oversize distribution defined by:

dN(L)

N(L) = f “n(L)dL: —n(L) )

L

The second method of growth rate estimation for MSMPR crystallizer CSD data
is facilitated by application of well known equation (Method II: White-Bendig-
~Larson®; WBL)

dinN(L) -1
dL  1.G(L)

(%)

Eq. (5) thus permits determination of growth rate from the slope of 1n N(L). Note
that Eq. (5) is true whether the growth rate varies with size or not.

The third methods (Method IIT) employs empirical size-dependent growth models
used in conjunction with population balance (Eq. (I)). The equations derived re-
presents the variation of population density or cumulative number oversize with
size for an MSMPR crystallizer explicitly.
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EMPIRICAL SIZE-DEPENDENT GROWTH MODELS

Several empirical size-dependent growth models are available in the literature; linear,
power, hyperbolic and exponential models are most frequently used.

Power Models

The most notable are those proposed by:
1) Bransom’

Ga(L) = ag . L® (6)
2) Canning and Randolph® (C-R)
Go(L) = G2. (1 + acl’) ()
3) Abegg, Stevens and Larson® (ASL)
Ga(L) = G3. (L + a Ly (8)

where G is the growth rate at zero size while a, b, and c'are the empirical parameters.
All the models presented above predict infinite growth rates as L=> oo which is,
of course, physically unrealizable. Additionally, Bransom’s mode! predicts zero
values of G as L= 0.

Exponential Models

Rosen and Hulburt, for the first time, proposed exponential dependence of crystal
size on crystal growth rate growing in fluidized bed crystallizer, which in the case of
constant supersaturation, can be written as'®:

G(L) = ky . (1 = ky . ™) (9)

where k|, k,, k; are parameters and v is the velocity of fluidizing supersaturated
solution. It is clear that fluid velocity, v, is a function of crystal size, L.
Rojkowski proposed another exponential model!:

G(L) = G, — (G, — G°).exp(—ag . L) (10)

where G, is the limiting growth rate for large crystals, G° is the growth rate of crystal
at zero size while a is the empirical parameter. Note that Eq. (10) can be written
in the form:

G, - G°

1

G(L) = G, (1 - .exp(—aRL)> (11)
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which refers exactly to the Rosen and Hulburt model (Eq. (9)): k, = G, k, =
= (G; — G°)/G,, and k; = a,.

Using the Rojkowski model (Eq. (10)) with the population balance concept
(Eq. (1)) a steady-state population den51ty distribution is obtained'!:

NO G _ AG 1+(1/tarGy)
n(L) = 5 ! )
1.G°\G, — 4G . exp(—agl) o

4G = G, — G° - (12)

exp [ —L/(zG,)] ;

Hyperbolic Models

There are two hyperbolic size-dependent growth rate models available in the litera-
ture:

1) Baumann’s model’?:
L-a,

G(L) = G, .
L + as

) (13)
where G(L) is equal to zero'for a, = 0. For crystals of large size, however, G(L)
asymptotically approaches limiting growth rate, G,. i

2) Rojkowski’s model'':
G + BG,L
1+ BL

G(L) = (14)
where G, and G° have the same meanings as in Eq. (10), while B is the parameter of
the model.

Both the Baumann model (Eq. (13)) and Rojkowski (Egs (10) and (14)) models
satisfy all essential requirements for size-dependent growth model, i.e. yield finite
values of G(L) for very large crystal sizes, and positive and non-zero values of growth
rate for crystal of zero size. Note that Rojkowski hyperbolic model (Eq. (14)) can

be written in the form:
_ o (L+ G°(BG,) y
c(u-cl( T ) 09

which exactly refers to the Baumann model (Eq. (13)): —a, = G°/(BG,), a5 = 1/B.

Two other growth models: two (MJ-2) and three (MJ-3) parameter exponential
size-dependent growth models have been recently proposed by Mydlarz and
Jones'®:14:15 (see later).

The mentioned above size-dependent models will be examined for the potash alum
MSMPR crystallizer CSD data'® which are again presented in Fig. 1. The experi-
mental conditions are presented in this figure. The discrete values of crystal growth
rates were estimated by using WBL method.

Collect. Czech. Chem. Commun. (Vol. 57) (1992)



Empirical Size-Dependent Growth Rate Models 313

If the data points are used directly, the growth rate calculated using the WBL
method (Eq. 5) is given by:

G(L;, L;- ) = G(L;) = ——‘Ll__l—;zf—"')— ‘ (16)
()

where L; is the arithmetic average crystal size in the range L;, L, _,, and the subscripts
i and i — 1 refer to the two consecutive sizes (L; < L;_), N(L,) is the cumulative

number oversize distribution.
The population density data shown in Fig. 1 were recalculated as cumulative
number oversize distribution data using following expression:

n

N(L;y = ¥ [n(L) - (Li-y — L] (17)

i=2

E
*

) 500 Teon % ] T 1268

‘ L1105, m L1065 m

FiG. 1 Fi1G. 2
CSD of potash alum crystallized by conti- Correlation of potash alum growth rate
nuous .cooling crystallization in MSMPR calculated by the White-Bending-Larson
crystallizer (Jones and Mydlarz, 1990). 1 method by means of the Bransom, C-R,
MJ-2 (Eq. (25)); 2 MJ-3 (Eq. (3]1)); 3 linear ASL and Rojkowski models. 1 Eqs (6, 7, 8);
regression for crystals larger than about 2 Eq. (10); 3 Eq. (I14)

350 pm, 1g(®) = slope = —9-471.10° m™!
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where n(L,) is the value of n(L) at the midpoint L; of a size range L,_, — L;. The
discrete potash alum crystal growth rates estimated from Eq. (16) were then fitted
to the empirical size-dependent models (Eqs (6), (7), (8), (10) and (14)). Parameter
values obtained are presented in Table I. Graphical interpretation of these correlation
is presented in Fig. 2. Values of the mean square error, S,, are also presented in
Table I. S, was calculated from the equation:

L TG, - G2
S, = 100. ,.;1[ G, ] (18)

k

where G, is the estimated (using WBL method) value of G(L), G, is the value of
these quantity calculated from size-dependent growth model, and k is the number
of experimental data points.

Analysis of the results presented in Table I and Fig. 2 lead to conclusion that
graphical illustration of Branson, C-R and ASL models are practically the same.
It was noted that values of parameters “a” and ““G°” in Egs (7) and (8) are related
to their initial guesses, while the value of parameter ““b” remains essentially constant.
Due this fact, the discrete values of G(L) evaluated using WBL method were again
fitted to the C-R and ASL models assuming constant values of parameter “‘a”.
Results of this exercise are presented in Table II. It is clear from Table II that value
of GO is related to the assumed value of parameter ‘“a”’. Note that values of mean
square error, S,, variance of fit, 4, and weighted sum of squares are practically the
same for the each set of parameters (G° a, b). It means that quality of
correlation considered size-dependent models for each set of parameters

TABLE I

Comparison of the empirical size-dependent crystal growth models for potash alum data

Model parameters

Model
oc a b G°.10° G, .18 B.10*° s,
um™1 — ms! ms! pmt A
GLy=a. L’ 0:55.10"% 0442 0 - - 2210
G(L)= G°(1 + al?) 1-407 0427 4182  — - 2651
G(L) = G°(1 + aLy 1-069 0434 5662 — - 2260
GlL)= G, — (G, —~ G%e "L 000373 — 7446 11200 — 14-37
G° + BG,L
GLy=—="1 - — 2110 13562 4339 1210
(L) 1+ pL
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((G2, ac, bc); (GY, au, by)) is very similar. It is easy to show that in each case:
1 + aclbc ~ aclbe - (19)
1+ a,°» ~ a1+ (20)

because acl’c » 1 and a,I’* » 1. Thus, we can further confirm the following
equation:

Ga(L) = Go(L) = Gu(L) = agL’® (21)

The same conclusion can be drawn analyzing the values of parameters presented
in Table II. For each set of model parameters (ac, G2, be or a,, G2, b,) the following
relationship is valid:

acGe = a,GY = ag (22)

These results confirms that despite the fact that the C~R and ASL are predict growth
rate for crystals of zero size, these values should be treated with caution, however,
when extrapolated from CSD data for larger crystals size range.

DIRECT ESTIMATION OF GROWTH RATE FOR MSMPR CRYSTALLIZER
CSD DATA (METHOD III)

As mentioned earlier in this paper, an alternative — direct method — permits estima-
tion of size-dependent growth rate. This procedure (Method IIT) employs empirical

TasLe 11
Parameters of size-dependent crystal growth rate models for potash alum

Canning-Radolph model (C-R) Eq. (7) Abegg-Steves-Larson model (ASL) Eq. (8)

pm~? G2 be S, o S, G, by S, & 8
m/s - o/ m?/s m?s m/s — o m?/s m?s

01 1:545.107% 0609 2662 3513 176 1-362.107% 0-467 24-08 28-31 1-42
05  6855.107% 0-504 2384 2863 143  7-265.10° 0-448 22-56 26:03 1-30
10 4185.107°% 0478 2312 27-22 136  5434.107° 0-445 22:35 2573 1-29
1000 5357.10710 0-446 22:24 25-63 1-28 1995.10°° 0442 22:12 2546 1-27
500  1:099.1071° 0443 22:14 2547 127 9-817.107 % 0442 22:11 2543 1-27
102 5518, 10711 0442 2212 2544 127 7-229.10710 0-442 22:11 2543 127
103 5535.10712 9442 22:11 2543 127 2-605.1071% 0-442 22.09 2542 1-27
108 5537.1071% 0442 22-11 2542 127 3-399.10"!! 0442 22:09 2542 1-27
101 5.537.1071° 0442 2211 2542 1-27  2:090.107%3 0442 22-11 2542 1:27
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size-dependent growth models used in conjunction with the population balance
(Eq. (1)). The equation derived represent the variation of population density or
cumulative number oversize distributions for an MSMPR crystallizer explicitly.
Direct fitting of the experimental CSD data to this derived equations permits estima-
tion of size-dependent crystal growth rate.
The requirements of size-dependent growth model should conform to the fol-
lowing:
1. It should fit the experimental data well in as wide a range of sizes as possible,
2. It should be physically realizable, that is, it should yield finite, positive and
non-zero values for growth rate for very small and very large crystal sizes,
3. It should have a number of parameters which can be determined easily from
experiments,
4. It should be of a reasonable simple form, so that it can treated theoretically
with ease.

Two Parameter Exponential Model (M J-2)

Recently, Mydlarz and Jones'*'!'* proposed a simple exponential two-parameter

size-dependent growth model (MJ-2):
G(L) = G,(1 — ™) (23)

where G, is the limiting growth rate for large crystals, Lis the crystal size and “a”
is an empirical parameter. Application of the MJ-2 model for potash alum crystals
produced in an MSMPR crystallizer showed that G, is an increasing function of
supersaturation while while value of parameter “a” remains essentially constant for
a given system?. Growth rate G(L) approaches limiting values of G,, for L= L_,,
and zero for L = 0. This latter condition can present conceptual difficulties, however,
in deducting the nucleation rates, B°.

Zero-size growth is a mathematical concept which is frequently used in estimation
nucleation rates. Thus the zero-size nucleation rate, B?, is usually expressed in terms
of nuclei density, n° and zero-size growth rate, G° and difficulty clearly arises if
G°‘equals zero. Nevertheless, Jan&i¢ and Garside!” showed that the nucleation rate
can also be calculated from the mean residence time, 7, and population density data
only: -

1 2]
p-Nr_1 f n(L) dL = n0G° (24)

T T Jo
Thus the zero-size growth rate can be estimated using Eq. (20), which is valid for
both size-dependent and size-independent growth processes. Despite the fact that
the MJ-2 model does not predict zero-size growth rate, it does give a satisfactory fit
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of author’s experimental data!#:'® and of available in the literature MSMPR cry-
stallizer CSD dataZ.

Using the MJ-2 model (Eq. (23)) with the population balance concept (Eq. (1))
a simple steady-state population density and cumulative number oversize distribu-
tions is obtained!3:!4:

—1-bfel~1
Inn(L) = In(n*) + . a(L — L*) + . ] :b>0; b=aG,r (25)
e -—
or
In N(L) = In (N*) + —b—l (fT——ll) (26)
e —

where the superscript * refers to a chosen size crystal L* and corresponding popula-
tion density n* or cumulative number oversize distribution N*. Note that Eqs (25)
and (26) contain only two parameters (a and b, respectively), thus these equations
permits of the parameter of the MJ-2 model from the MSMPR crystallizer CSD
data in a simple way. Although Eqs (25) and (26) do not predict the population
density and cumulative number oversize distributions at zero size, it is possible to
choose value of L* arbitrarily close to zero. In the practical application of Eqs
(25, 26), L* is the smallest measured crystal size which is dependent on the measured
technique used.

Substitution of MJ-2 model (Eq. (23)) into population balance (Eq. (1)) and than
integration in limits from unknown Ly to L yields:

Inn(L) =In(ny) + .a(L— Ly) + _1b— b (eaL — 1) (27)

eaLN -1

or

In N(L) = In (Ny) + ‘71 (:"LLN: 11) (28)

where Ly, is the size of the smallest nuclei produced in the MSMPR crystallizer and
ny(Ny) is the population density (cumulation number oversize) of nuclei. Note that
Eq. (27) and Eq. (28) contain four adjustable parameters: a, b, Ly, In (ny) (Eq. (27));
a, b, Ly, In (Ny) (Eq. (28)). Thus, fitting experimental MSMPR crystallizer CSD
data to Eqs (27) or (28) permits not only estimation of parameter of the MJ-2 model
(a and b, respectively), but also permits evaluation of nuclei size, Ly, and its popula-
tion density, ny (or cumulative number oversize distribution, Ny), and further the
nucleation kinetics:

By = ny. Gy (29)
where Gy = G(L= Ly) = Gn(l — e~ %),
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Three Parameter Exponential Model (M J-3)

Mydlarz and Jones suggested recently three parameter exponential size-dependent
growth model (MJ-3)15:1%:

G(L) = Gp(1 — e™?E+9) (30)
where G,, and a have the same meaning as in Eq. (24), while “c” is additional empi-
rical parameter. It can be shown?'2° that the MJ-3 model is a simpler form of the
Rojkowski exponential model (Eq. (10)). Using the MJ-3 model with population

balance concept (Eq. (1)), a simple steady-state population density, n(L), and cumula-
tive number oversize, N(L), distributions are simply obtained"*:'°:

n(L) = K.e" . (4.eL — p)i-1-v,
b=aGur; A=¢e*; K=n%d— 1)1+ - (31)
N(L) = Ky.(4.e®™ = )71 Ky = N4 - 1)t+o - (32)

For potassium sulfate and potash alum dataZ, parameter “‘c” is equal to about 1 um,
while parameter “a” is about 10* m™?, thus parameter 4 is close to unity (4 = 1-02).
The MJ-2 and MJ-3 model have been presented in details elsewhere!®~15:19,

Application of the MJ-2 and MJ-3 Size-Dependent Models

The MJ-2 and MJ-3 growth rate models will be examined for use in the estimation
of G(L) for two set of simulated data of known characteristic as used previously'®
and in correlation of real available in the literature.

Simulated Data
The first set of simulated data is derived from the linear relation:
Inn(L) = —pL + In (n°) (33)
with p = 1-25.10*m™! and In (n°) = 34.
The second set exhibits a significant curvature and is calculated from tile folléwing
equation:
Inn(L)=P,.exp(P, . L™®° + P;.L)+ Py .L+ P (34)

with P, = 29-3071, P, = —134882m~'2, P, =182021m™!, P, = —125.
.10* m~! and Ps = 24-4516. A residence of time of 1 000 s will be assumed in each
case. The simulated population density data described by Eqs (33) and (34) are also
presented in Fig. 3. Note (TableI in ref.'®) that Lin Eqs (33) and (34) refers to
typical values from a standard sieve test.
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Direct fitting of the first set of population density CSD data (Eq. (33)) to the Eqs
(25, 31) results in the value of parameters which are presented in Table III. Note
that in the case when log population density data plot is a linear function of size
the values of parameter “a” is approximately two order of magnitude larger than
in the case when log population data plot exhibits a significant curvature (Eq. (34))
(see Table IIT). It is easy to show that for such larger values of parameter “a” Eq.
(25) and Eq. (31) reduce to a respectively simpler form:

n(L) = n* . exp (ZE“ (L - L*)) (35)

n(L) = n°. exp (Ib—“ . L) (36)

e.i. to the expected form for MSMPR crystallizer CSD data when growth rate is
size-independent (see Eq. (2)). In such cases the G(L) can be easily estimated from
the slope of the log population density vs size data plot.

Direct fitting of the second set of population density CSD data (Eq. (30)) to the
Egs (25, 31) results in the value of parameters which are presented in Table TII.
Note that both the MJ-2 and MJ-3 model predict practically exactly theoretical
values of G(L) in the case when log population density exhibits significant curvature
(Eq. (34)) (see Fig. 4). The theoretical values of G(L) for the CSD data represented

. . 8 1,2 /-—_ E
3
'\Eﬂ
3 R
] Gé@ lEJOB
L1065, m

Fi1G. 3 FiG. 4
Graphical interpretation of Egs (33, 34). ¢ Comparison of theoretical size-dependent
Eq. (33); O Eq. (34 1 MJ-2 (Eq. (25); 2 growth rate with that predicted by the
MIJ-3 (Eq. (31)) MIJ-2 and MJ-3 model. 1 MJ-2 ((Eq. 23));

2 MJ-3 (Eq. (30)); 3 Eq. (3
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by Eq. (34) were calculated from the Sikdar equation (Eq. (3)) which may be written
in the form:

J' “A(L)dL

V=22
6w . n(L)

(37

The integrals in Eq. (37) were evaluated numerically using Simpson’s rule (step =
= 1pum). It is also interesting to note that, in both cases of simulated CSD data,
use of Egs (25, 31) with parameter values listed in Table III, reproduces the popula-
tion density data represented by Eqs (33) and (34), respectively with excellent agree-
ment as illustrated in Fig. 3.

Experimental Data

The MJ-2 and MJ-3 growth rate models will be further examined for use in the
estimation of G(L) for experimental data of potash alum’® (Fig. 1). The experimental
potash alum data (Fig. 1) were fitted to MJ-2 (Eq. (25)) and MJ-3 (Eq. (31)) theore-
tical population distribution curves. The results of these fitting are presented in
Table I11. It is interesting to note that log population density data for crystals larger
than about 350 um are approximately linear (see Fig. 1). Thus in this size range
the growth rate is practically size-independent and can be easily estimated from
the slope of the log population density data plot (— 1/tG,,,,) and the mean residence
time 7. Linear regression of the log population density data for crystal larger than
about 350 um results in a slope equal to —9-471.10° m™. With © = 1044 s, the
maximum growth rate, G,,.,, should approach a value of 0-101 pm s~ *.

The directly estimated size-dependent growth kinetic of potash alum are also
presented in Fig. 5. The predictions of the MJ-2 and MJ-3 models are quite similar
and show a size-dependent behavior in which the growth rate continues to increase
with increasing size asymptotically to a maximum. It should emphasized here that
the predictions of the MJ-2 and MJ-3 models in the larger crystal size range are
consistent with the maximum growth rate, G,,,, obtained from the slope of log
population density data plot. Use of the C-R, ASL and Rojkowski models for dis-
crete G(L) calculated using WBL equation (Method II), however, shows increasing
deviation in growth rate with increasing crystal size (see Fig. 5).

The experimental potash alum data reported recently by Jones and Mydlarz!®
were also fitted to MJ-2 (Eq. (27)) theoretical population distribution curve. Fig. 6
shows the estimated nuclei size, Ly, as a function of relative supersaturation, .
As can be seen from this figure, the estimated nuclei size, Ly, is significantly related
to the actual level of supersaturation. The higher the supersaturation, the smaller
is the nuclei size. This relation is consistent with theoretical prediction?!

Collect. Czech. Chem. Commun. (Vol. 57) (1992)



322 Mydlarz:

Fig. 7 shows aluminum-ammonium alum continuous population density data
reported by Rojkowski'!. The experimental conditions are presented in this figure.
Again it should be noted that the log population data presented in Fig. 7 for crystal
larger than 231 pm are approximately linear with size. Estimated from the slope of
log population density data the maximum growth rate, G, is equal to 0-098 pm s~ .

The fits of the Rojkowski population density curve (Eq. (12)) to the sieving log
population density data are presented in Fig. 7. The curve is based on the best values
of a,n% G, and G° reorted by Rojkowski (@ = 3-2.1073 um~*, G° = 0-018 pm .
87 G, =0117ums™!, B® =10%s"!'17, »n® = B%/G° = 56.10° um™1171).
The theoretical Rojkowski curve obtained by using non-linear regression!! does not
fit the experimental points in the small crystal size range as well asis shown in Fig.7.
This is due to the inability of the model (10) to fit data which exhibits significant
curvature when plotted as log population vs size'?.

The data presented in Fig. 7 were also fitted to the MJ-2 and MJ-3 steady-state
population density distributions (Eqs (25) and (31), respectively). Values of the model
parameter calculated using a nonlinear regression are presented in Table ITI. The
best fit In n(L) curve are also shown in Fig. 7. These lines smooth the experimental
points very well for all crystal sizes.

It is interesting to compare the growth rates obtained from data presented in Fig. 7
by direct fitting these data to MJ-2 and MJ-3 steady-state distributions (Eqs (25) and
(31), respectively) with growth rates reported by Rojkowski''. This is presented
in Fig. 8. It should be noted that predictions of the MJ-2 and MJ-3 models are con-
sistent with the value of G,,,, obtained from the slope of log population data for
crystals larger than about 231 um. Growth rates reported by Rojkowski, however,
are significantly larger than G,,,, in this crystal size range.

Similarly, there is a significant difference in prediction of zero-size population
density n°. Value of n® reported by Rojkowski is about one order of magnitude
smaller than n° predicted by the MJ-3 model. Consequently, there is also a difference
in prediction of nucleation rate. Use of the MJ-3 model gives B® = 3-1.10° #/(s1)
while the nucleation rate reported by Rojkowski is equal to about 1-0. 10° 3 /(s ).

CONCLUSIONS

The first part of this paper has been primarily concerned with the examination of
different empirical size-dependent growth rate models for potash alum data presented
in paper!®. Comparison of different growth rate models for potash alum growth
rate vs size data, calculated using WBL.method shows, that both the C-R and ASL
model can be reduced for simpler Bransom model. These results confirms that despite
the fact that the C-R and ASL are predict growth rate for crystals of zero size, these
values should be treated with caution, however, when extrapolated from CSD data
for larger crystals size range.
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F1G. 5
Comparison of method II and method III
of potash alum growth rate estimation.
1 Eqs (6,7,8); 2 Eq. (I4); 3 Eq.(10); 4
Eqs (23, 30, 5 G,,,, = 0101 yms~!

in 6(L). #/(em-1)

::v'/(ll'm'l)

in n(l),

F16. 7

Population density vs size for aluminum-
—-ammonium alum crystals produced in an
MSMPR crystallizer (Rojkowski, 1977).
1 MJ-3 (Eq. (31)); 2 MJ-2 (Eq. (25)); 3 Eq.
(12); 4 linear regression for crystals larger
than about 231 um, tg(z) = slope = — 8§99,
.10°m™?
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Comparison of predictions of the MJ-2 and
M1I-3 models with Rojkowski exponential
model for aluminum-ammonium alum cry-
stals, 1 MJ-2 (Eq. (23)); 2 MJ-3 (Eq. (30));
3 Bq. (10)
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In the second part of the paper the direct method of growth rate estimation for
MSMPR crystallizer CSD data is discussed, and application of two other exponential
size-dependent growth models (MJ-2 and MJ-3) for both simulated and experimental
data is presented. The MJ-2 and MJ-3 results in both a relatively simple forms of
population density distributions (Egs (25) and (31), respectively) and cumulative
number oversize distributions (Eqs (26) and (32), respectively) and also facilitates
direct curve fitting of experimental log population density (or log cumulative number
oversize distribution) data to determine the coefficients of the models. Additionally,
the MJ-2 model allows also direct estimation of nuclei size and its population density
data (Eq. (27)), and further the nucleation kinetics.

SYMBOLS

a, b, c parameters of size-dependent growth models
parameter of the MJ-3 model

nucleation rate, 2 /(m® s)

G linear growth rate, pumy/s, m/s

G, limiting growth rate for large crystals, um/s, m/s
G° zero-size crystal growth rate, ym/s, m/s

L crystal size, pym, m

K, Ky parameters of the MJ-3 model

n(L) population density, # /m4
n° zero-size population density, % /m*
N(L) cumulative number oversize distribution, gt /m3
NO zero-size cumulative number oversize distribution, # /m3
Sy weighted sum of squares
S, mean relative error, %
g superficial velocity, m/s
Aw supersaturation, wt % of solute
T mean residence time, 8
62 variance
o relative supersaturation, (—)
Subscripts
A refers to ASL model
B refers to Bransom model
C refers to Canning-Randolph (C-R) model
1 refers to infinite crystal size
m refers to large crystal size
N refers to nuclei

Superscripts

refers to zero-size crystal
* refers to crystal size L = L*
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