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A comparison of well known size-dependent crystal growth rate models has been presented. 
The models have been verified for crystal size distributions which have been recently presented 
in the literature. It is shown that for large crystal size range both the Abegg-Stevenson-Larson 
(ASL) model and the Canning-Randolph (C-R) model can be reduced to the simplest Bransom 
model. Two another kinetics size-dependent growth rate models have been presented and tested 
for size distributions which were recently presented by Mydlarz and Jones. Application of the 
proposed size-dependent growth models gives much better estimation of growth rate than other 
size-dependent models tested as well as Sikdar and White-Bendig-Larson methods. 

The simulation, design and control of bulk suspension crystallizers is dependent on 
the accurate prediction of the crystal size distribution (CSD). Crystallization kinetics 
are commonly measured using the continuous mixed-suspension, mixed-product- 
-removal (MSMPR) crystallizer technique which permits simultaneous determination 
of both growth and nucleation rates by analysis of the CSD at a given mean residence 
time. These kinetic data can be then correlated with appropriate growth and nuclea- 
tion rate models. 

For an MSMPR crystallizer operating at steady state, the general population 
balance equation reduces to': 

(1) 
d[G(L) * m] - + - =  4 L )  0 

dL 5 

where G(L) is the crystal growth rate, n(L) is the population density, L is the crystal 
size and z is the mean retention time of suspension within the crystallizer. For size- 
-independent growth G(L) = G = constant, Eq. ( 1 )  can be integrated to give: 

n(L) = no . exp [ -L/(G . T)] 
- -  - .- -~ - - ~ _ .  _- 
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Eq. (2) indicates that a size analysis performed on a representative sample of crystal- 
lizer contents yields the necessary data to determine both crystal growth rate G 
(= dL/dt), and nuclei population density no (L = 0), the latter being related to the 
nucleation rate Bo (= no . G). 

Non-constant growth rates complicate the determination of kinetics from CSD 
data. Researches have used several approaches to dealing with the modelling of 
non-constant growth. These include size-dependent growth and growth rate disper- 
sion: experimental data show the existence of both size-dependent growth and growth 
rate dispersion. Mydlarz2 and Mydlarz and B r i e d i ~ ~ . ~  has recently compared the 
size-dependent and growth rate dispersion modelling of growth rate estimation for 
MSMPR crystallizer CSD data, using both current known empirical size-dependent 
and growth dispersion models. They foundzd4 that the size-dependent growth 
rate modelling remains , at present, the recommended approach for modelling growth 
rate kinetics for MSMPR crystallizer CSD data. 

When crystal growth rate is size-dependent, relationships between crystal size 
distribution and crystallization kinetics become more complicated. Three general 
methods have been proposed in the literature for estimation of size-dependent growth 
rate from continuous mixed-suspension, mixed product-removal (MSMPR) cry- 
stallizer. 

Briefly, discrete values of the size-dependent growth rate can be estimated from 
equation suggested by Sikdar' (Method I): 

where,N(L) is the cumulative number oversize distribution defined by: 

n(L)dL: (") - - - -n(L) 
dL 

The second method of growth rate estimation for MSMPR crystallizer CSD data 
is facilitated by application of well known equation (Method 11: White-Bendig- 
-Larson6; WBL) 

dlnN(L) -1  =- 
dL 5 .  G(L) 

Eq. ( 5 )  thus permits determination of growth rate from the slope of In N(L). Note 
that Eq. (5 )  is true whether the growth rate varies with size or not. 

The third methods (Method 111) employs empirical size-dependent growth models 
used in conjunction with population balance (Eq. (1)).  The equations derived re- 
presents the variation of population density or cumulative number oversize with 
size for an MSMPR crystallizer explicitly. 
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EMPIRICAL SIZE-DEPENDENT GROWTH MODELS 

Several empirical size-dependent growth models are available in the literature; linear, 
power, hyperbolic and exponential models are most frequently used. 

Power Models 

The most notable are those proposed by: 
1) Bransom' 

G,(L) = an . LbS 

G&) = G: . (1 i a,LbC) 

G,(L) = GF: . (1 + a,L)b^ 

2) Canning and Randolph* (C-R) 

3) Abegg, Stevens and Larson' (ASL) 

where Go is the growth rate at  zero size while a, b,  and c'are the empirical parameters. 
All the models presented above predict infinite growth rates as L a  03 which is, 
of course, physically unrealizable. Additionally, Bransom's model predicts zero 
valies of G as L+ 0. 

Exponential Models 

Rosen and Hulburt, for the first time, proposed exponential dependence of crystal 
size on crystal growth rate growing in fluidized bed crystallizer, which in the case of 
constant supersaturation, can be written as": 

G(L) = k ,  . (1 - k, . e-k3v) (9)  

where k , ,  k, ,  k ,  are parameters and v is the velocity of fluidizing supersaturated 
solution. It is clear that fluid velocity, v ,  is a function of crystal size, L. 

Rojkowski proposed another exponential model' ' : 

where G, is the limiting growth rate for large crystals, Go is the growth rate of crystal 
at zero size while a is the empirical parameter. Note that Eq. (10) can be written 
in  the form: 

GI - Go . exp (- uRL) 
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which refers exactly to  the Rosen and Hulburt model (Eq. ( 9 ) ) :  k ,  = G,, k2 = 
= (GI - Go)/Gl, and k ,  = aR. 

Using the Rojkowski model (Eq. (10)) with the population balance concept 
(Eq. ( I ) )  a steady-state population density distribution is obtained": 

Hyperbol ic  Models 

There are two hyperbolic size-dependent growth rate models available in  the litera- 
ture: 

1) Baumann's modelI2: 
L -  (12 

L +  a3 
G(L)  = G, . -__ 

where G(L) is equal to zero'for a2 = 0. For crystals of large size, however, G(L)  
asymptotically approaches limiting growth rate, G1. 

2) Rojkowski's model' : 

where G ,  and Go have the same meanings as in Eq. ( l o ) ,  while /? is the parameter of 
the model. 

Both the Baumann model (Eq. (13) )  and Rojkowski (Eqs (20) and (24 ) )  models 
satisfy all essential requirements for size-dependent growth model, i.e. yield finite 
values of G(L) for very large crystal sizes, and positive and non-zero values of growth 
rate for crystal of zero size. Note that Rojkowski hyperbolic model (Eq. (14 ) )  can 
be written in the form: 

which exactly refers to the Baumann model (Eq. (13 ) ) :  -a2 = Go/(BG,), 0, = l/B. 
Two other growth models: two (MJ-2) and three (MJ-3) parameter exponential 

size-dependent growth models have been recently proposed by Mydlarz and 

The mentioned above size-dependent models will be examined for the potash alum 
MSMPR crystallizer CSD data16 which are again presented i n  Fig. 1. The experi- 
mental conditions are presented in this figure. The discrete values of crystal growth 
rates were estimated by using WBL method. 

(see later). 
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I'f t,he data points are used directly, the growth rate calculated using the WBL 
method (Eq. 5 )  is given by: 

where Li is the arithmetic average crystal size in  the range Li, Li- l ,  and the subscripts 
i and i - 1 refer to the two consecutive sizes (Li < Li-  N(Ll) is the cumulative 
number oversize distribution. 

The population density data shown in Fig. 1 were recalculated as cumulative 
number oversize distribution data using following expression: 

FIG. 1 
CSD of potash alum crystallized by conti- 
nuous cooling crystallization in MSMPR 
crystallizer (Jones and Mydlarz, 1990). 1 
MJ-2 (Eq. (25)); 2 MJ-3 (Eq. (31)); 3 linear 
regression for crystals larger than about 
350 pm, tg(a) = slope = -9.471 . lo3 rn-l  

FIG. 2 
Correlation of potash alum growth rate 
calculated by the White-Bending-Larson 
method by means of the Bransom, C-R, 
ASL and Rojkowski models. 1 Eqs (6, 7,8); 
2 Eq. (10); 3 Eq. (14) 

- 
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where n(L,) is the value of n(L)  at the midpoint Li of a size range - Li. The 
discrete potash alum crystal growth rates estimated from Eq. (16) were then fitted 
to the empirical size-dependent models (Eqs (a) ,  (7) (8), (10) and (14)). Parameter 
values obtained are presented in Table I. Graphical interpretation of these correlation 
is presented in Fig. 2. Values of the mean square error, S,, are also presented in 
Table I. S, was calculated from the equation: 

Gi  - G, 

(18) 

where Gi is the estimated (using WBL method) value of G(L) ,  G, is the value of 
these quantity calculated from size-dependent growth model, and k is the number 
of experimental data points. 

Analysis of the results presented in Table I and Fig. 2 lead to conclusion that 
graphical illustration of Branson, C-R and ASL models are practically the same. 
It was noted that values of parameters “a” and “GO” in Eqs (7) and (8) are related 
to their initial guesses, while the value of parameter “b” remains essentially constant. 
Due this fact, the discrete values of G(L) evaluated using WBL method were again 
fitted to the C-R and ASL models assuming constant values of parameter “a”. 
Results of this exercise are presented in Table 11. It is clear from Table I1 that value 
of Go is related to the assumed value of parameter “a”. Note that values of mean 
square error, S,, variance of fit, 6, and weighted sum of squares are practically the 
same for the each set of parameters (GO, a, b) .  It means that quality of 
correlation considered size-dependent models for each set of parameters 

TABLE I 
Comparison of the empirical size-dependent crystal growth models for potash alum data 

Model parameters 

SY 
pm-’ - m s - ’  m s - ’  pm-‘ % 

b G O .  109 G ,  . lo8 8 .  103 
Model 

U 

- 22.10 
26.5 1 

G(L) = G, 2 (G, - GO) e -aL  0.00373 - 7.446 11*200 - 14.37 

G(L) = 

G(L) = u , Lb 0.55. lo-’ 0.442 0 - 
G(L) = Go(l + 4Lb) 1.407 0.427 4.182 - - 
G(L) = GO(l + u L ) ~  1.069 0.434 5.662 - - 22.60 

- - 2.110 13.562 4.339 12.10 
Go + BG,L 

1 + /?L 
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((G,!, a,-, bc); (Gi, aA, bA)) is very similar. It is easy to show that in each case: 

315 

1 + a& 'y ClCLbC 

1 f aAPA 'y aACA 

(19) 

(20) 

because acLbC % 1 and u,L** g 1. Thus, we can further confirm the following 
equation: 

G,(L) E Gc(L) E G,(L) = a&'' (21)  

The same conclusion can be drawn analyzing the values of parameters presented 
in Table 11. For each set of model parameters (ac, GE, bc or a,, Gi, bA) the following 
relationship is valid: 

acG: L oAG: 2 aB (22)  

These results confirms that despite the fact that the C-R and ASL are predict growth 
rate for crystals of zero size, these values should be treated with caution, however, 
when extrapolated from CSD data for larger crystals size range. 

DIRECT ESTIMATION OF GROWTH RATE FOR MSMPR CRYSTALLIZER 
CSD DATA (METHOD 111) 

As mentioned earlier in this paper, an alternative - direct method - permits estima- 
tion of size-dependent growth rate. This procedure (Method 111) employs empirical 

TABLE I1 
Parameters of size-dependent crystal growth rate models for potash alum 

Canning-Radolph model (C-R) Eq. (7) Abegg-Steves-Larson model (ASL) Eq. (8) 
U 

pm- ' G: b, Sy 62 S, GA b, Sy d2 S, 
m/s - % m2/s m2/s m/s - % m2/s m2/s 

0.1 
0.5 
1.0 

10.0 
50.0 
102 
1 o3 
106 
10'0 

1.545, lo-' 
6.855. lo-' 
4.185. lo-' 

1.099. lo-'' 
5,518. lo-' ' 
5.535. 

5.357. 1 0 - ' O  

5.537. 10-l4 
5.537 . 10- l9 

0.609 26-62 35.13 1.76 1.362. lo-' 0.467 24.08 28.31 1-42 
0.504 23.84 28.63 1.43 7.265. 0.448 22.56 26-03 1.30 
0,478 23.12 27.22 1.36 5.434. 0.445 2235 25.73 1.29 
0446 22.24 25.63 1.28 1.995. lo-' 0.442 22.12 25.46 1.27 
0.443 22.14 25.47 1.27 9.817, lo-" 0442 22.11 25.43 1.27 
0.442 22.12 25.44 1.27 7.229. lo-'' 0.442 22.11 25.43 1.27 
8.442 22.11 25.43 1.27 2-605. lo-" 0442 22.09 25.42 1.27 
0.442 22.11 25.42 1.27 3.399. lo-'' 0.442 22.09 25.42 1.27 
0.442 22.11 25.42 1.27 2.090. 0.442 22-11 25.42 1.27 
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size-dependent growth models used in conjunction with the population balance 
(Eq. (1) ) .  The equation derived represent the variation of population density or 
cumulative number oversize distributions for an MSMPR crystallizer explicitly. 
Direct fitting of the experimental CSD data to this derived equations permits estima- 
tion of size-dependent crystal growth rate. 

The requirements of size-dependent growth model should conform to the fol- 
lowing: 

1. 
2. 

3. 

4. 

It should fit the experimental data well in as wide a range of sizes as possible, 
It should be physically realizable, that is, it should yield finite, positive and 
non-zero values for growth rate for very small and very large crystal sizes, 
It should have a number of parameters which can be determined easily from 
experiments, 
It should be of a reasonable simple form, so that it can treated theoretically 
with ease. 

Two Parameter Exponential Model (MJ-2)  

Recently, Mydlarz and 
size-dependent growth model (MJ-2): 

proposed a simple exponential two-parameter 

G(L) = G,(1 - e-aL) (23) 

where G, is the limiting growth rate for large crystals, Lis  the crystal size and “a” 
is an empirical parameter. Application of the MJ-2 model for potash alum crystals 
produced in an MSMPR crystallizer showed that G, is an increasing function of 
supersaturation while while value of parameter “a” remains essentially constant for 
a given system’. Growth rate G(L) approaches limiting values of G, for L* L,,, 
and zero for L = 0. This latter condition can present conceptual difficulties, however, 
in deducting the nucleation rates, BO. 

Zero-size growth is a mathematical concept which is frequently used in estimation 
nucleation rates. Thus the zero-size nucleation rate, Bo, is usually expressed in terms 
of nuclei density, no, and zero-size growth rate, Go and difficulty clearly arises if 
Go equals zero. Nevertheless, JanCiC and Garside“ showed that the nucleation rate 
can also be calculated from the mean residence time, 7, and population density data 
only: 

(24) B - - = -  - NT .somn(L) dL = noGo 
z 

Thus the zero-size growth rate can be estimated using Eq. (20), which is valid for 
both size-dependent and size-independent growth processes. Despite the fact that 
the MJ-2 model does not predict zero-size growth rate, it does give a satisfactory fit 
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of author's experimental and of available in the literature MSMPR cry- 
stallizer CSD data2. 

Using the MJ-2 model (Eq. (23) )  with the population balance concept (Eq. (I)) 
a simple steady-state population density and cumulative number oversize distribu- 
tions is 

-1 - b e'L - 
In n ( ~ )  = In ( n * )  + . U ( L  - L*) + - - : b > 0; b = UG,T (25)  b (eaL* - :) 
or 

where the superscript * refers to a chosen size crystal L* and corresponding popula- 
tion density n* or cumulative number oversize distribution N*. Note that Eqs (25)  
and (26)  contain only two parameters (u and b, respectively), thus these equations 
permits of the parameter of the MJ-2 model from the MSMPR crystallizer CSD 
data in a simple way. Although Eqs (25)  and (26)  do not predict the population 
density and cumulative number oversize distributions at  zero size, it is possible to 
choose value of L* arbitrarily close to zero. In the practical application of Eqs 
( 2 5 , 2 6 ) ,  L* is the smallest measured crystal size which is dependent on the measured 
technique used. 

Substitution of MJ-2 model (Eq. (23) )  into population balance (Eq. (1)) and than 
integration in limits from unknown LN to L yields: 

or 
-1 eoL - 1 In N(L)  = In (NN) + - .- 
b (eaLN - 1) 

where LN is the size of the smallest nuclei produced in the MSMPR crystallizer and 
FIN(") is the population density (cumulation number oversize) of nuclei. Note that 
Eq. (27)  and Eq. (28)  contain four adjustable parameters: a, b, &, In (nN) (Eq. (27) ) ;  
a,  b, &, In (NN) (Eq. (28) ) .  Thus, fitting experimental MSMPR crystallizer CSD 
data to Eqs ( 2 7 )  or (28)  permits not only estimation of parameter of the MJ-2 model 
(u and b, respectively), but also permits evaluation of nuclei size, &, and its popula- 
tion density, nN (or cumulative number oversize distribution, NN), and further the 
nucleation kinetics: 

BN = nN . GN (29)  

where GN = G(L= LN) = G,(1 - e-OaLN). 
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318 Mydlarz : 

Three Parameter Exponential Model (MJ-3)  

Mydlarz and Jones suggested recently three parameter exponential size-dependent 
growth model (MJ-3)’5*’9: 

G(L) = G,(1 - e-rr(L+c) ) (30)  

where G, and a have the same meaning as in Eq. (24), while “c” is additional empi- 
rical parameter. It can be that the MJ-3 model is a simpler form of the 
Rojkowski exponential model (Eq. (10)). Using the MJ-3 model with population 
balance concept (Eq. (I)), a simple steady-state population density, n(L), and cumula- 
tive number oversize, N(L), distributions are simply obtained’ ,”: 

n(L) = K , eaL. ( A  . eaL - l)(-l-b)/b : 

(31) 

(32) 

b = aG,r ; A = em ; K = no(A - 1 ( l c b ) l b  ) 
N(L)  = KN , ( A ,  eaL - 1 ) - ’ l b  : KN = N o ( A  - l ) ( ’+b)/b 

For potassium sulfate and potash alum data’, parameter “c” is equal to about 1 pm, 
while parameter “a” is about lo4 m-’, thus parameter A is close to unity (A r 1.02). 

The MJ-2 and MJ-3 model have been presented in details 

Application of the M J - 2  and MJ-3  Size-Dependent Models 

The MJ-2 and MJ-3 growth rate models will be examined for use in the estimation 
of G(L) for two set of simulated data of known characteristic as used previously’6 
and in correlation of real available in the literature. 

Simulated Data 

The first set of simulated data is derived from the linear relation: 

In n(E)  = - p L  + In (no) (33) 

with p = 1.25. lo4 m-’ and In (no)  = 34. 

The second set exhibits a significant curvature and is calculated from the following 
equation: 

In n(L) = P, . exp (P* . + P, . L) + p4. L + P, (34) 

with P, = 29.3071, P, = -1344382 m-1/2, P, = 1 820.21 m-’, P4 = -1.25 . 
. lo4 m-’ and P, = 24.4516. A residence of time of 1 000 s will be assumed in each 
case. The simulated population density data described by Eqs (33) and (34) are also 
presented in Fig. 3. Note (Table I in ref.16) that E in Eqs (33) and (34) refers to 
typical values from a standard sieve test. 
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Direct fitting of the first set of population density CSD data (Eq. (33))  to the Eqs 
(25 ,31 )  results in the value of parameters which are presented in Table 111. Note 
that in the case when log population density data plot is a linear function of size 
the values of parameter ‘‘a” is approximately two order of magnitude larger than 
in the case when log population data plot exhibits a significant curvature (Eq. (34) )  
(see Table 111). It is easy to show that for such larger values of parameter ‘‘0’’ Eq. 
(25) and Eq. (31) reduce to a respectively simpler form: 

e.i. to the expected form for MSMPR crystallizer CSD data when growth rdte is 
size-independent (see Eq. (2)). In such cases the G(L) can be easily estimated from 
the slope of the Iog population density vs size data plot. 

Direct fitting of the second set of population density CSD data (Eq. (30) )  to the 
Eqs (25 ,31)  results in the value of parameters which are presented in Table 111. 
Note that both the MJ-2 and MJ-3 model predict practically exactly theoretical 
values of G(L) in the case when log population density exhibits significant curvature 
(Eq. (34) )  (see Fig. 4). The theoretical values of G(L) for the CSD data represented 

FIG. 3 FIG. 4 

Graphical interpretation of Eqs (33, 34). c Comparison of theoretical size-dependent 
E@. (33); 0 Eq. (34); 1 MJ-2 (Eq. (25)); 2 growth rate with that predicted by the 
MJ-3 (Eq. (31)) MJ-2 and MJ-3 model. 1 MJ-2 ((Eq. 23)); 

2 MJ-3 (Eq. (30)); 3 Eq. (3) 
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by Eq. (34) were calculated from the Sikdar equation (Eq. (3)) which may be written 
in the form: 

rLn(L) dL 
J o  G(L) = 

T . n(L) (37) 

The integrals in Eq. (37) were evaluated numerically using Simpson’s rule (step = 
= 1 pm). It is also interesting to note that, in both cases of simulated CSD data, 
use of Eqs (25,31) with parameter values listed in Table 111, reproduces the popula- 
tion density data represented by Eqs (33) and (34), respectively with excellent agree- 
ment as illustrated in Fig. 3. 

Experimental Data 

The MJ-2 and MJ-3 growth rate models will be further examined for use in the 
estimation of G(L) for experimental data of potash alurnl6 (Fig. 1). The experimental 
potash alum data (Fig. 1) were fitted to MJ-2 (Eq. (25)) and MJ-3 (Eq. (31)) theore- 
tical population distribution curves. The results of these fitting are presented in 
Table 111. It is interesting to note that log population density data for crystals larger 
than about 350pm are approximately linear (see Fig. 1). Thus in this size range 
the growth rate is practically size-independent and can be easily estimated from 
the slope of the log population density data plot (- l/zGmax) and the mean residence 
time T. Linear regression of the log population density data for crystal larger than 
about 350 pm results in a slope equal to -9.471 . lo3 m-l.  With z = 1044 s, the 
maximum growth rate, G,,,,,, should approach a value of 0.101 pm s- ’. 

The directly estimated size-dependent growth kinetic of potash alum are also 
presented in Fig. 5 .  The predictions of the MJ-2 and MJ-3 models are quite similar 
and show a size-dependent behavior in which the growth rate continues to increase 
with increasing size asymptotically to a maximum. It should emphasized here that 
the predictions of the MJ-2 and MJ-3 models in the larger crystal size range are 
consistent with the maximum growth rate, G,,,, obtained from the slope of log 
population density data plot. Use of the C-R, ASL and Rojkowski models for dis- 
crete G(L) calculated using WBL equation (Method II), however, shows increasing 
deviation in growth rate with increasing crystal size (see Fig. 5) .  

The experimental potash alum data reported recently by Jones and Mydlarz18 
were also fitted to MJ-2 (Eq. (27)) theoretical population distribution curve. Fig. 6 
shows the estimated nuclei size, L,, as a function of relative supersaturation, Q. 

As can be seen from this figure, the estimated nuclei size, &, is significantly related 
to the actual level of supersaturation. The higher the supersaturation, the smaller 
is the nuclei size. This relation is consistent with theoretical prediction2’. 
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Fig. 7 shows aluminum-ammonium alum continuous population density data 
reported by Rojkowski". The experimental conditions are presented in this figure. 
Again it should be noted that the log population data presented in Fig. 7 for crystal 
larger than 231 pm are approximately linear with size. Estimated from the slope of 
log population density data the maximum growth rate, G,,,, is equal to 0.098 ym s -  '. 

The fits of the Rojkowski population density curve (Eq. (12)) to the sieving log 
population density data are presented in Fig. 7. The curve is based on the best values 
of a, no, G, and Go reorted by Rojkowski (0 = 3.2. lo-' pm-', Go = 0.018 pm . 
. s- ' ,  G,  = 0.117 pm s-l ,  Bo = 10's-l l-', FZO = Bo/Go = 5 . 6 .  lo6 pm-' 1-I). 

The theoretical Rojkowski curve obtained by using non-linear regression'' does not 
fit the experimental points in the small crystal size range as well as is shown in Fig.7. 
This is due to the inability of the model (10) to fit data which exhibits significant 
curvature when plotted as log population vs size". 

The data presented in Fig. 7 were also fitted to the MJ-2 and MJ-3 steady:state 
population density distributions (Eqs (25) and (32), respectively). Values of the model 
parameter calculated using a nonlinear regression are presented in Table 111. The 
best fit I n  n(L) curve are also shown in Fig. 7. These lines smooth the experimental 
points very well for all crystal sizes. 

It is interesting to compare the growth rates obtained from data presented in Fig. 7 
by direct fitting these data to MJ-2 and MJ-3 steady-state distributions (Eqs (25)  and 
(31), respectively) with growth rates reported by Rojkowski". This is presented 
in Fig. 8. It should be noted that predictions of the MJ-2 and MJ-3 models are con- 
sistent with the value of G,,,,,, obtained from the slope of log population data for 
crystals larger than about 231 pm. Growth rates reported by Rojkowski, however, 
are significantly larger than G,,, in this crystal size range. 

Similarly, there is a significant difference in prediction of zero-size population 
density no. Value of no reported by Rojkowski is about one order of magnitude 
smaller than no predicted by the MJ-3 model. Consequently, there is also a difference 
in prediction of nucleation rate. Use of the MJ-3 model gives Bo 3.1 . lo5 #/(s 1) 
while the nucleation rate reported by Rojkowski is equal to about 1.0. lo5 #/(s 1). 

CONCLUSIONS 

The first part of this paper has been primarily concerned with the examination of 
different empirical size-dependent growth rate models for potash alum data presented 
in paper16. Comparison of different growth rate models for potash alum growth 
rate vs size data, calculated using WBL.niethod shows, that both the C-R and ASL 
model can be reduced for simpler Bransom model. These results confirms that despite 
the,fact that the C-R and ASL are predict growth rate for crystals of zero size, these 
values sliould be treated with caution, however, when extrapolated from CSD data 
for larger crystals size range. 
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bits, rn 

FIG. 5 
Comparison of method I1 and method 111 
of potash alum growth rate estimation. 
1 Eqs (6, 7,8); 2 Eq. (14); 3 Eq. (10); 4 
Eqs (23,30); 5 G,,, = 0.101 pm 8-" 

0 5CS 1000 
L. '1T 

FIG. 7 
Population density vs size for aluminum- 
-ammonium alum crystals produced in an 
MSMPR crystallizer (Rojkowski, 1977). 

(12); 4 linear regression for crystals larger 
than about 231 prn, tg(a) = slope = -899. 
, lo3 m-l  

I MJ-3 (Eq. (31)); 2 MJ-2 (Eq. (25)); 3 Eq. 

0.102, - 
FIG. 6 

Influence of supersaturation on estimated 
nuclei sizes 

Fro. 8 
Comparison of predictions of the MJ-2 and 
MJ-3 models with Rojkowski exponential 
model for aluminum-amrponium alum cry- 
stals. 1 MJ-2 (Eq. (23)); 2 MJ-3 (Eq. (30)); 
3 m. (10) 
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In the second part of the paper the direct method of growth rate estimation for 
MSMPR crystallizer CSD data is discussed, and application of two other exponential 
size-dependent growth models (MJ-2 and MJ-3) for both simulated and experimental 
data is presented. The MJ-2 and MJ-3 results in both a relatively simple forms of 
population density distributions (Eqs (25) and (31), respectively) and cumulative 
number oversize distributions (Eqs (26) and (32), respectively) and also facilitates 
direct curve fitting of experimental log population density (or log cumulative number 
oversize distribution) data to determine the coefficients of the models. Additionally, 
the MJ-2 model allows also direct estimation of nuclei size and its population density 
data (Eq. (27)), and further the nucleation kinetics. 

SYMBOLS 

parameters of size-dependent growth models 
parameter of the MJ-3 model 
nucleation rate, # /(m3 s) 
linear growth rate, Bm/s, m/s 
limiting growth rate for large crystals, pm/s, m/s 
zero-size crystal growth rate, pm/s, m/s 
crystal size, pm, m 
parameters of the MJ-3 model 
population density, # /m4 
zero-size population density, # /m4 
cumulative number oversize distribution, # /m3 
zero-size cumulative number oversize distribution, # /m3 
weighted sum of squares 
mean relative error, % 
superficial velocity, m/s 
supersaturation, wt % of solute 
mean residence time, s 
variance 
relative supersaturation, (-) 

Subscripts 

A refers to ASL model 
B refers to Bransom model 
C 
1 
m 
N refers to  nuclei 

refers to Canning-Randolph (C-R) model 
refers to infinite crystal size 
refers to large crystal size 

Superscripts 
0 refers to zero-size crystal 

refers to crystal size L = L* * 
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